
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat.         (2023) 117:108 
https://doi.org/10.1007/s13398-023-01440-8

ORIG INAL PAPER

Optimal moment conditions for complete convergence for
maximal normed weighted sums from arrays of rowwise
independent random elements in Banach spaces

Andrew Rosalsky1 · Lê Vǎn Thành2
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Abstract
This work establishes complete convergence formaximal normedweighted sums from arrays
of rowwise independent random elements taking values in a real separable stable type p
Banach space or in a real separable Rademacher type p Banach space under optimal moment
conditions. An extension of a result in Hu et al. (Stochas Anal Appl 39:177–193, 2021)
is obtained as a special case of the main theorem. To establish the main result, which is
a Baum–Katz–Hsu–Robbins–Erdös-type theorem for maximal normed weighted sums, we
prove a Rosenthal-type inequality for maximal normed partial sums of independent random
elements taking values in Rademacher type p Banach spaces. Moreover, the conditions for
complete convergence in the main result are shown to completely characterize stable type p
Banach spaces when 1 ≤ p < 2. The sharpness of the results is illustrated by two examples.

Keywords Maximal normed weighted sum · Complete convergence · Optimal moment
condition · Rademacher type p Banach space · Stable type p Banach space · Rosenthal
inequality
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1 Introduction andmotivation

Throughout, all random elements are defined on a probability space (�,F,P) and take values
in a real separable Banach space X with norm ‖ · ‖.
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Let � be a nonempty index set. A family of X -valued random elements {Xλ, λ ∈ �} is
said to be stochastically dominated by a real-valued random variable X if

sup
λ∈�

P(‖Xλ‖ > t) ≤ P(|X | > t) for all t ≥ 0. (1.1)

If the random elements Xλ, λ ∈ � are identically distributed, then (1.1) is of course satisfied
with X = ‖Xλ0‖ for any λ0 ∈ �. Some authors use an apparently weaker definition of
{Xλ, λ ∈ �} being stochastically dominated by a real-valued random variable Y , namely
that

sup
λ∈�

P(‖Xλ‖ > t) ≤ C1P(C2|Y | > t) for all t ≥ 0 (1.2)

for some constants C1,C2 ∈ (0,∞). It was recently shown by Rosalsky and Thành [21] that
(1.1) and (1.2) are indeed equivalent.

If a family of random elements {Xλ, λ ∈ �} is stochastically dominated by a real-valued
random variable X , then for all p > 0 and t > 0,

sup
λ∈�

E(‖Xλ‖p1(‖Xλ‖ > t)) ≤ E(|X |p1(|X | > t)) (1.3)

and

sup
λ∈�

E(‖Xλ‖p1(‖Xλ‖ ≤ t)) ≤ E(|X |p1(|X | ≤ t)) + t pP(|X | > t) ≤ E(|X |p). (1.4)

The inequality in (1.3) follows from Lemma 3 of Adler et al. [2] and the first inequality
in (1.4) follows from Lemma 1 of Adler and Rosalsky [1]. It is easy to verify the second
inequality in (1.4). We will use (1.3) and (1.4) in our proofs without further mention.

Complete convergence for sums of independent X -valued random elements was studied
by many authors, but only few of them consider complete convergence for maximal normed
partial sums which is of special interest. The following proposition is a recent result of Hu
et al. [12] concerning complete convergence for maximal normed partial sums of random
elements in Rademacher type p Banach spaces. We refer to Ledoux and Talagrand [16] for
the definitions of Rademacher type p and stable type p Banach spaces. Equivalent character-
izations of a Banach space being of stable type p, properties of stable type p Banach spaces,
as well as various relationships between the conditions “Rademacher type p” and “stable
type p” may be found in Woyczyński [28], Marcus and Woyczyński [17], and Pisier [18].
Some of these properties and relationships were listed in [20].

Proposition 1.1 (Hu et al. [12]) Let 1 ≤ p ≤ 2, and {kn, n ≥ 1} be a sequence of positive
integers satisfying limn→∞ kn = ∞. Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise
independentmean zero randomelements taking values in a real separable Rademacher type p
Banach space. Suppose that the array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically dominated
by a real-valued random variable X. Let α > 0, and let {an,i , 1 ≤ i ≤ kn, n ≥ 1} be an
array of constants satisfying

kn∑

i=1

|an,i |p = O(n−α). (1.5)

Suppose that

kn = o(nα/p), (1.6)
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and

E(|X |p) < ∞. (1.7)

Then for all β < α − 1,

∞∑

n=1

nβ
P

(
max

1≤k≤kn

∥∥∥∥∥

k∑

i=1

an,i Xn,i

∥∥∥∥∥ > ε

)
< ∞ for all ε > 0. (1.8)

In view of the Baum–Katz theorem (see Theorem 1 in [4]), a natural question to ask is
whether or not the moment condition (1.7) is sharp. The current work is an attempt to answer
this question. More precisely, we shall prove in Sect. 3 the following theorem which follows
from Theorem 2.3, the main result of this paper.

Theorem 1.2 Let 1 ≤ p ≤ 2, and {kn, n ≥ 1} be a sequence of positive integers satisfying
limn→∞ kn = ∞. Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise independent mean
zero random elements taking values in a real separable Rademacher type p Banach space.
Suppose that the array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is stochastically dominated by a real-
valued random variable X. Let α > 0, and let {an,i , 1 ≤ i ≤ kn, n ≥ 1} be an array of
constants satisfying (1.5). Suppose that

kn = O(n). (1.9)

Then for all −1 ≤ β < α − 1, the moment condition

E

(
|X |(β+2)p/(α+1)

)
< ∞ (1.10)

implies (1.8).

Remark 1.3 (i) It is easy to see that (1.8) is trivial if β < −1. Since β < α − 1, the moment
condition (1.10) is weaker than (1.7). Furthermore, it follows from Proposition 2.8 and
from a perusal of the proof of Theorem 1.2 that the moment condition (1.10) is optimal
for (1.8).

(ii) In Proposition 1.1, there is a tradeoff involving α. The large is α, the stronger is (1.5) but
the weaker is (1.6). It is easy to see that if α > p, then (1.6) is weaker than (1.9). But
if α ≤ p, then (1.6) is stronger than (1.9). See Remark 4.3 in [12] for another tradeoff
involving p and the hypotheses of Proposition 1.1.

2 A Baum–Katz–Hsu–Robbins–Erdös-type theorem for maximal
normedweighted sums

2.1 A Rosenthal-type inequality for maximal normed partial sums in Rademacher
type p Banach spaces

The following result, which may be of independent interest, is a Rosenthal-type inequality
for maximal normed partial sums of independent random elements in Rademacher type p
Banach spaces. When q = p, it reduces to Lemma 2.1 of Rosalsky and Thành [19]. Making
use of the case q > p is a crucial step in the proof of Theorem 2.3.
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Lemma 2.1 Let 1 ≤ p ≤ 2 and {Xi , 1 ≤ i ≤ n} be a collection of n independent mean zero
random elements in a Rademacher type p Banach space X . Then for all q ≥ p, there exists
a constant Cp,q ∈ (0,∞) depending only on p and q such that

E

⎛

⎝ max
1≤k≤n

∥∥∥∥∥

k∑

i=1

Xi

∥∥∥∥∥

q⎞

⎠ ≤ Cp,q

⎛

⎝
(

n∑

i=1

E‖Xi‖p

)q/p

+
n∑

i=1

E
(‖Xi‖q

)
⎞

⎠ . (2.1)

Proof The conclusion of the lemma is trivial if q = p = 1. Therefore, we only need to
consider the case q > 1. Let

Sk = X1 + · · · + Xk, 1 ≤ k ≤ n,

and

Fk = σ(X1, . . . , Xk), 1 ≤ k ≤ n.

Then {‖Sk‖,Fk, 1 ≤ k ≤ n} is a nonnegative submartingale and so by Doob’s inequality
(see, e.g., [7, p. 255]),

E

(
max
1≤k≤n

‖Sk‖q
)

≤
(

q

q − 1

)q

E‖Sn‖q . (2.2)

Since X is of Rademacher type p,

E
(‖Sn‖p) ≤ Cp

k∑

i=1

E
(‖Xi‖p) , (2.3)

where Cp ∈ (0,∞) is a constant depending only on p. Applying Lemma A.1, Jensen’s
inequality, and (2.3), there exists a constant Cq depending only on q such that for all 1 ≤
k ≤ n,

E
(‖Sn‖q

) ≤ Cq

(
(E‖Sn‖)q + E

(
max
1≤i≤n

‖Xi‖
)q)

≤ Cq

(
(
E ‖Sn‖p)q/p + E

(
n∑

i=1

‖Xi‖q
))

≤ Cq

⎛

⎝
(
Cp

n∑

i=1

E
(‖Xi‖p)

)q/p

+
n∑

i=1

E
(‖Xi‖q

)
⎞

⎠ . (2.4)

Combining (2.2) and (2.4), we have

E

(
max
1≤k≤n

‖Sk‖q
)

≤
(

q

q − 1

)q

Cq

⎛

⎝
(
Cp

n∑

i=1

E
(‖Xi‖p)

)q/p

+
n∑

i=1

E
(‖Xi‖q

)
⎞

⎠

≤ Cp,q

⎛

⎝
(

n∑

i=1

E
(‖Xi‖p)

)q/p

+
n∑

i=1

E
(‖Xi‖q

)
⎞

⎠

thereby proving (2.1) with Cp,q =
(

q

q − 1

)q

Cq max{Cp, 1}. �	
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Remark 2.2 The Rosenthal inequality (Rosenthal [22]) for sums of independent random vari-
ables is a very useful tool in proving limit theorem in probability. Finding the best constant in
the inequality for independent random variables taking values in the real line (Rademacher
type 2) is an interesting problem. If {Xi , 1 ≤ i ≤ n} are independent symmetric real-valued
random variables, it is proved in [13] that

(
E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

q)1/q

≤ Kq

log q
max

⎧
⎪⎨

⎪⎩

⎛

⎝E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

2
⎞

⎠
1/2

,

(
n∑

i=1

E(|Xi |q)
)1/q

⎫
⎪⎬

⎪⎭
for all q ≥ 2,

(2.5)

where K is a universal constant satisfying
1

e
√
2

≤ K ≤ 7.35. In [13], it is also proved that

the rate q/ log q is optimal. In [15], it is shown that (2.5) holds with K approximately equal
to 2e (see Theorem 2 and Corollary 3 in [15]). Recently, Chen et al. [6] used Stein’s method
and proved that (2.5) holds with K ≤ 3.5 without assuming the symmetry of the random
variables. The Rosenthal-type inequality obtained in [6] can be applied to random variables
satisfying many interesting dependence structures.

2.2 A Baum–Katz–Hsu–Robbins–Erdös-type theorem for maximal normedweighted
sums

Theorem 2.3 may now be presented. It is a Baum–Katz–Hsu–Robbins–Erdös-type theorem
(see Theorem1 in [4], Theorem1 in [10], and Theorem I in [8]) formaximal normedweighted
sums in stable type p Banach spaces. Hereafter, letC denote a generic constant (0 < C < ∞)
which is not necessarily the same one in each appearance.

Theorem 2.3 Let p ≥ 1, α > 1/2, p0 = min{p, 2}. Let {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} be
an array of rowwise independent mean zero random elements in a real separable stable
type p0 Banach space X , and let {kn, n ≥ 1} be a sequence of positive integers such that
limn→∞ kn = ∞ and (1.9) holds. Suppose that the array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1} is
stochastically dominated by a real-valued random variable X. If

E(|X |p) < ∞, (2.6)

then

∞∑

n=1

nα p−2
P

(
max

1≤k≤kn

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ > nαε

)
< ∞ for all ε > 0, (2.7)

where {cn,i , 1 ≤ i ≤ kn, n ≥ 1} is an array of constants satisfying
kn∑

i=1

|cn,i |r = O(n) for some r > max {p, 2(α p − 1)/(2α − 1)} . (2.8)

Remark 2.4 By (1.9) and Hölder’s inequality, we see that the larger is r , the stronger is the
condition (2.8). To see this, assume that

kn∑

i=1

|cn,i |r1 = O(n) for some r1 > 0.
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Then for all 0 < r2 < r1, we have from Hölder’s inequality that

kn∑

i=1

|cn,i |r2 ≤
( kn∑

i=1

1

)1−r2/r1 ( kn∑

i=1

|cn,i |r1
)r2/r1

= O(n).

Proof of Theorem 2.3 It is clear to see that we only need to consider the case α p ≥ 1 since
(2.7) is obvious if α p < 1. In view of (1.9), we can assume, without loss of generality, that
kn = n. For n ≥ 1, 1 ≤ k ≤ n, set

Yn,k = Xn,k1(‖Xn,k‖ ≤ nα), Zn,k = Xn,k1(‖Xn,k‖ > nα),

and

Sn,k =
k∑

i=1

cn,i (Yn,i − E(Yn,i )).

Let ε > 0 be arbitrary. For n ≥ 1, we have

P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ > nαε

)

≤ P

(
max
1≤i≤n

‖Xn,i‖ > nα

)
+ P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Yn,i

∥∥∥∥∥ > nαε

)

≤
n∑

i=1

P
(‖Xn,i‖ > nα

) + P

(
max
1≤k≤n

∥∥Sn,k
∥∥ > nαε −

n∑

i=1

∥∥E
(
cn,i Yn,i

)∥∥
)

.

(2.9)

By (2.6), Lemma A.2, and the stochastic domination assumption, we have

∞∑

n=1

nα p−2
n∑

i=1

P
(‖Xn,i‖ > nα

) ≤
∞∑

n=1

nα p−1
P

(|X | > nα
)

< ∞. (2.10)

Since E(Xn,i ) = 0, E(|X |p) < ∞ and α p ≥ 1, we have by (2.8), Remark 2.4, and the
Lebesgue dominated convergence theorem that

∑n
i=1 ‖E (

cn,i Yn,i
) ‖

nα
=

∑n
i=1 ‖E (

cn,i Zn,i
) ‖

nα

≤
(∑n

i=1 |cn,i |
)
E(|X |1(|X | > nα))

nα

≤ nE(|X |1(|X | > nα))

nα

= 1

nα−1E

( |X |p
|X |p−1 1(|X | > nα)

)

≤ 1

nα p−1E(|X |p1(|X |p > nα p)) → 0 as n → ∞. (2.11)

Combining (2.9)–(2.11), the proof of the theorem will be completed if we can show that

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥Sn,k
∥∥ > nαε/2

)
< ∞. (2.12)
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Firstly, we consider the case where 1 ≤ p < 2. Then p0 = p. Since X is of stable type
p Banach space, it is of Rademacher type p1 for some p < p1 < 2. Set q = min{p1, r} ∈
(p, r ]. By (2.8) and Remark 2.4, we have

n∑

i=1

|cn,i |q ≤ O(n). (2.13)

Since X is of Rademacher type p1, it is also of Rademacher type q . Applying Markov’s
inequality, Lemma 2.1, (2.13), (2.6), and Lemma A.2, we have

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥Sn,k
∥∥ > nαε/2

)

≤ 2q

εq

∞∑

n=1

nα(p−q)−2
E

(
max
1≤k≤n

∥∥Sn,k
∥∥q

)

≤ C
∞∑

n=1

nα(p−q)−2
n∑

i=1

|cn,i |qE‖Yn,i − E(Yn,i )‖q

≤ C
∞∑

n=1

nα(p−q)−2
n∑

i=1

|cn,i |qE‖Yn,i‖q

≤ C
∞∑

n=1

nα(p−q)−2

(
n∑

i=1

|cn,i |q
)

(
E(|X |q1(|X | ≤ nα)) + nαq

P(|X | > nα)
)

≤ C
∞∑

n=1

nα(p−q)−1
E(|X |q1(|X | ≤ nα)) + C

∞∑

n=1

nα p−1
P(|X | > nα) < ∞ (2.14)

thereby proving (2.12).
We now consider the case where p ≥ 2. Then p0 = 2 and X is of Rademacher type 2.

Applying Markov’s inequality and Lemma 2.1, we obtain

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥Sn,k
∥∥ > nαε/2

)
≤ 2r

εr

∞∑

n=1

nα(p−r)−2
E

(
max
1≤k≤n

∥∥Sn,k
∥∥r

)

≤ C
∞∑

n=1

nα(p−r)−2

⎛

⎝
(

n∑

i=1

c2n,iE‖Yn,i − E(Yn,i )‖2
)r/2

+
n∑

i=1

|cn,i |rE‖Yn,i − E(Yn,i )‖r
)

:= I1 + I2. (2.15)

By Jensen’s inequality and (2.6), we have

E‖Yn,i‖2 ≤ E(|X |21(|X | ≤ nα)) + n2αP(|X | > nα)

≤ E(X2) ≤ (E|X |p)2/p < ∞.
(2.16)
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It follows from (2.8), (2.16), and Remark 2.4 that

I1 ≤ C
∞∑

n=1

nα(p−r)−2

(
n∑

i=1

c2n,i

)r/2

≤ C
∞∑

n=1

nα(p−r)−2nr/2

= C
∞∑

n=1

n−1+(α p−1)−r(2α−1)/2 < ∞. (2.17)

Proceeding in a similar manner as the last four lines of (2.14), we obtain that

I2 < ∞. (2.18)

Combining (2.15), (2.17), and (2.18), we obtain (2.12).

The proof of the theorem is completed. �	

Remark 2.5 If 0 < p < 1, then Theorem 2.3 holds without any geometric condition of the
underlying Banach space and without the rowwise independence and mean zero assumptions
on the array {Xn,i , 1 ≤ i ≤ kn, n ≥ 1}. This is proved as follows:

Let Yn,k and Zn,k be as in the proof of Theorem 2.3. Let ε > 0 be arbitrary, and let
q = min{(p + 1)/2, r} ∈ (p, 1). By (2.8) and Remark 2.4, we have

n∑

i=1

|cn,i |q = O(n). (2.19)

Applying Markov’s inequality, the Cr -inequality (see, e.g., Theorem 3.2.2 in [9]), (2.19),
(2.6), and Lemma A.2, we have

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Yn,i

∥∥∥∥∥ > nαε/2

)

≤ 2q

εq

∞∑

n=1

nα(p−q)−2
E

⎛

⎝ max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Yn,i

∥∥∥∥∥

q⎞

⎠

≤ 2q

εq

∞∑

n=1

nα(p−q)−2
E

((
n∑

i=1

‖cn,i Yn,i‖
)q)

≤ C
∞∑

n=1

nα(p−q)−2
n∑

i=1

|cn,i |qE‖Yn,i‖q

≤ C
∞∑

n=1

nα(p−q)−2

(
n∑

i=1

|cn,i |q
)

(
E(|X |q1(|X | ≤ nα)) + nαq

P(|X | > nα)
)

≤ C
∞∑

n=1

nα(p−q)−1
E(|X |q1(|X | ≤ nα)) + C

∞∑

n=1

nα p−1
P(|X | > nα) < ∞. (2.20)

Combining the first inequality in (2.9), (2.10), and (2.20), we obtain (2.7). �	
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For the case where the Banach space is of Rademacher type 2 (or, equivalently, of stable
type 2), we have the following corollarywhich establishes complete convergence formaximal
normed weighted sums. When an,i ≡ 1, this result was proved in [11] (only for partial sums
of real-valued random variables) by a different method (see [11, Theorem 2]). When s = 1,
this is theHsu–Robbins theorem (see Theorem1 in [10]) forweighted sums inBanach spaces.

Corollary 2.6 Let 1 ≤ s < 2 and {Xn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise
independent mean zero random elements in a real separable Rademacher type 2 Banach
space. Assume that the array {Xn,i , 1 ≤ i ≤ n, n ≥ 1} is stochastically dominated by a
real-valued random variable X. If

E(|X |2s) < ∞, (2.21)

then

∞∑

n=1

P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ > n1/sε

)
< ∞ for all ε > 0, (2.22)

where {cn,i , 1 ≤ i ≤ n, n ≥ 1} is an array of constants satisfying

n∑

i=1

|cn,i |r = O(n) for some r > 2s/(2 − s). (2.23)

Proof Letting p = 2s and α = 1/s, then (2.21) coincides with (2.6), and (2.8) follows from
(2.23) and the assumption that 1 ≤ s < 2. Applying Theorem 2.3 with p = 2s, α = 1/s and
p0 = 2, we obtain (2.22). �	
The following example, which was inspired by examples of Beck [5] and Kuczmaszewska
and Szynal [14], shows that Theorem 2.3 can fail if the stable type p0 hypothesis is weakened
to the Rademacher type p0 hypothesis.

Example 2.7 Let 1 ≤ p < 2 and α = 1/p. Then α > 1/2. Let X be the real separable
Banach space 	p of absolute p-th power summable real sequences x = (x1, x2, . . .) with
norm

‖x‖ =
⎛

⎝
∞∑

j=1

|x j |p
⎞

⎠
1/p

.

Let p0 = min{p, 2} = p. The Banach space 	p is of Rademacher type p0 but is not of stable
type p0. Let ei denote the i-th element of the standard basis in 	p; that is, ei is the element
in 	p having 1 for its i-th coordinate and 0 for the other coordinates. Let kn = n, n ≥ 1. Let
{Rn,i , 1 ≤ i ≤ n, n ≥ 1} be an array of rowwise independent Rademacher random variables:

P(Rn,i = 1) = P(Rn,i = −1) = 1

2
, 1 ≤ i ≤ n, n ≥ 1.

Define

Xn,i = Rn,i ei , 1 ≤ i ≤ n, n ≥ 1.

Clearly (1.9) holds and the array is stochastically dominated by the random variable X ≡ 1
statisfying (2.6) since

‖Xn,i‖ ≡ 1 a.s., 1 ≤ i ≤ n, n ≥ 1.
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Now (2.8) holds with cn,i ≡ 1, 1 ≤ i ≤ n, n ≥ 1 for all r > 0. However

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ =
∥∥∥∥∥

k∑

i=1

Rn,i ei

∥∥∥∥∥ =
(

k∑

i=1

1

)1/p

= k1/p a.s., 1 ≤ k ≤ n, n ≥ 1

and so for all ε ∈ (0, 1),

∞∑

n=1

nα p−2
P

(
max

1≤k≤kn

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ > nαε

)
=

∞∑

n=1

n−1
P

(∥∥∥∥∥

n∑

i=1

cn,i Xn,i

∥∥∥∥∥ > n1/pε

)

=
∞∑

n=1

n−1 = ∞.

Thus (2.7) fails.

The following proposition shows that the moment condition (2.6) in Theorem 2.3 is
optimal for (2.7).

Proposition 2.8 Let p ≥ 1, p0 = min{p, 2}. Let {Xi , i ≥ 1} be a sequence of independent
mean zero random elements in a real separable stable type p0 Banach space such that the
random variables ‖Xn‖, n ≥ 1 are identically distributed. Then the following two statements
are equivalent.

(i) The random variable ‖X1‖ satisfies

E(‖X1‖p) < ∞.

(ii) For every α > 1/2 and for every array of constants {cn,i , 1 ≤ i ≤ n, n ≥ 1} satisfying
(2.8), we have

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Xi

∥∥∥∥∥ > nαε

)
< ∞ for all ε > 0. (2.24)

Proof The proof of implication ((i)⇒(ii)) follows immediately from Theorem 2.3 by letting
Xn,i = Xi for all n ≥ 1 and 1 ≤ i ≤ n, and letting X = ‖X1‖.

Next, assume that (ii) holds. Letting α = 1 and cn,i ≡ 1, we have from (2.24) that

∞∑

n=1

n p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

Xi

∥∥∥∥∥ > nε

)
< ∞ for all ε > 0.

The rest of the argument proceeds in exactly the same manner as that of the necessary part
of Theorem 1.2 of [3] or that of Theorem 3.1 (ii) of [27]. We note that the assumption p < 2
in the necessary part of Theorem 1.2 of [3] or Theorem 3.1 (ii) of [27] is not needed. �	

The following example shows that in a real separable stable type p = 2 Banach space,

(a) Theorem 2.3 can fail if α = 1/2,

and

(b) the implication ((i)⇒(ii)) in Proposition 2.8 can fail if α = 1/2.
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Example 2.9 Consider the real separable stable type p = 2 Banach space X = R with norm
|x |, x ∈ R. Let {Xn, n ≥ 1} be a sequence of i.i.d. real-valued random variables with
E(X1) = 0 and 0 < E(X2

1) < ∞, and let Xn,i = Xi , 1 ≤ i ≤ n, n ≥ 1. Let α = 1/2, and
cn,i = 1, 1 ≤ i ≤ n, n ≥ 1. Now, if Theorem 2.3 holds with α = 1/2 or if the implication
((i)⇒(ii)) in Proposition 2.8 holds with α = 1/2, then

∞∑

n=1

n−1
P

(
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

Xi

∣∣∣∣∣ > n1/2ε

)
< ∞ for all ε > 0,

and thus

lim
n→∞

∑n
i=1 Xi

n1/2
= 0 a.s. (2.25)

But it follows from the central limit theorem that

lim sup
n→∞

∑n
i=1 Xi

n1/2
= ∞ a.s.

which contradicts (2.25) thereby verifying (a) and (b).

The next theorem shows that when 1 ≤ p < 2, Theorem 2.3 provides an exact character-
ization of stable type p Banach spaces.

Theorem 2.10 Let 1 ≤ p < 2, and let X be a real separable Banach space. Then the
following two statements are equivalent.

(i) X is of stable type p.
(ii) For every sequence {Xn, n ≥ 1} of independent mean zero X -valued random elements

which is stochastically dominated by a random variable X, for every α > 1/2, and
for every array of constants {cn,i , 1 ≤ i ≤ n, n ≥ 1} satisfying (2.8), the condition
E(|X |p) < ∞ implies

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

cn,i Xi

∥∥∥∥∥ > nαε

)
< ∞ for all ε > 0. (2.26)

Proof The proof of implication ((i)⇒(ii)) follows immediately from Theorem 2.3 by letting
Xn,i = Xi for all n ≥ 1 and 1 ≤ i ≤ n.

Next, assume that (ii) holds. Let {Xn, n ≥ 1} be a sequence of independent and symmet-
ric X -valued random elements which is stochastically dominated by a real-valued random
variable X with E(|X |p) < ∞. By letting α = 1/p > 1/2 and cn,i ≡ 1, (2.26) becomes

∞∑

n=1

n−1
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

Xi

∥∥∥∥∥ > n1/pε

)
< ∞ for all ε > 0,

and therefore

lim
n→∞

∑n
i=1 Xi

n1/p
= 0 a.s.

By Lemma A.3, X is of stable type p. �	
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Remark 2.11 AReviewer kindly suggested that in Theorem 2.3, it may be possible to replace
(2.8) by the weaker condition that

kn∑

i=1

|cn,i |r = O(n) for some r > p. (2.27)

That Reviewer also kindly pointed out to us that in Sung [23] and Wu et al. [29], the authors
proved Theorem 2.3 for sequences (rather than for arrays) of real-valued identically dis-
tributed ρ∗-mixing random variables under (2.27). It should be noted that if 1 ≤ p ≤ 2 or
supn≥1,1≤i≤kn |cn,i | ≤ c0 < ∞ for some positive constant c0, then (2.8) and (2.27) are the
same. However, (2.27) is weaker than (2.8) if p > 2 and the cn,i are not uniformly bounded.

By using our proof and further employing the technique presented in Sung [23] and Wu
et al. [29], we can prove that Theorem 2.3 (and so Proposition 2.8 and Theorem 2.10) still
holds if (2.8) is weakened by (2.27). We sketch the proof as follows.

Under the assumptions of Theorem 2.3 with (2.8) replaced by (2.27), we can assume,
without loss of generality, that kn ≡ n and

∑n
i=1 |cn,i |r ≤ n for all n ≥ 1. Since (2.8) and

(2.27) are the same if 1 ≤ p ≤ 2, we only need to consider the case where p > 2, and
therefore, α > 1/p. Set

c(1)
n,i = cn,i1(|cn,i | ≤ 1), c(2)

n,i = cn,i1(|cn,i | > 1), 1 ≤ i ≤ n, n ≥ 1.

To prove (2.7), it suffices to show that

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

c(1)
n,i Xn,i

∥∥∥∥∥ > nαε

)
< ∞ for all ε > 0, (2.28)

and

∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥∥∥

k∑

i=1

c(2)
n,i Xn,i

∥∥∥∥∥ > nαε

)
< ∞ for all ε > 0. (2.29)

Since supn≥1,1≤i≤n |c(1)
n,i | ≤ 1, we obtain (2.28) by Theorem 2.3. Therefore, it remains

to prove (2.29). Let ε > 0 be arbitrary. For 1 ≤ k ≤ n, n ≥ 1, set Y (2)
n,k =

c(2)
n,k Xn,k1(‖c(2)

n,k Xn,k‖ ≤ nα) and S(2)
n,k = ∑k

i=1(Y
(2)
n,i − E(Y (2)

n,i )). By (2.15)–(2.17) in Sung
[23], we have

I1 :=
∞∑

n=1

nα p−2
n∑

i=1

P(|c(2)
n,i X | > nα) ≤ CE|X |p < ∞. (2.30)

By (2.21)–(2.23) in Sung [23] (see also Lemma 2.7 in Wu et al. [29]), we have for all s > r
that

I2 :=
∞∑

n=1

nα p−αs−2
n∑

i=1

E(|c(2)
n,i X |s1(|c(2)

n,i X | ≤ nα)) ≤ CE|X |p < ∞. (2.31)

By using (2.30) and following the same argument which leads to (2.12), the proof of (2.29)
will be complete if we can show that

J :=
∞∑

n=1

nα p−2
P

(
max
1≤k≤n

∥∥∥S(2)
n,k

∥∥∥ > nαε/2

)
< ∞. (2.32)
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Letting s > 2(α p − 1)/(2α − 1), and using (2.30), (2.31) and the same argument as (2.15),
we have

J ≤ C
∞∑

n=1

nα(p−s)−2

⎛

⎝
(

n∑

i=1

E‖Y (2)
n,i − E(Y (2)

n,i )‖2
)s/2

+
n∑

i=1

E‖Y (2)
n,i − E(Y (2)

n,i )‖s
⎞

⎠

≤ C
∞∑

n=1

nα(p−s)−2

⎛

⎝
(

n∑

i=1

(
c(2)
n,i

)2
)s/2

+
n∑

i=1

E‖Y (2)
n,i ‖s

⎞

⎠

≤ C
∞∑

n=1

nα(p−s)−2

(
ns/2 +

n∑

i=1

(
E(|c(2)

n,i X |s1(|c(2)
n,i X | ≤ nα)) + nsαP(|c(2)

n,i X | > nα)
))

≤ C

( ∞∑

n=1

n−1+(α p−1)−s(2α−1)/2 + I1 + I2

)
< ∞

verifying (2.32). The proof is completed. �	

3 The proof of Theorem 1.2

In this section, we will prove Theorem 1.2.

Proof of Theorem 1.2 Set

p1 = (β + 2)p/(1 + α), α1 = (1 + α)/p.

Then p1 < p and α1 p1 = β + 2 ≥ 1. Since the underlying Banach space is of Rademacher
type p, it is of stable type p1. Letting r1 = p > p1 and cn,i ≡ nα1an,i , we have from (1.5)
that

kn∑

i=1

|cn,i |r1 = n1+α

kn∑

i=1

|an,i |p = O(n).

Now with p replaced by p1, α replaced by α1, and r replaced by r1, we obtain by applying
Theorem 2.3 for the case p1 ≥ 1 and Remark 2.5 for the case p1 < 1 that

∞∑

n=1

nα1 p1−2
P

(
max

1≤k≤kn

∥∥∥∥∥

k∑

i=1

cn,i Xn,i

∥∥∥∥∥ > nα1ε

)
< ∞ for all ε > 0,

thereby proving (1.8). �	
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A Appendix

In this section, we present some known results which are used in the previous sections. The
first lemma is Theorem 1 in [24].

Lemma A.1 Let {Xi , 1 ≤ i ≤ n} be a collection of n independent mean 0 random elements
in a real separable Banach spaceX . Then for all q ≥ 1, there exists a constant Cq depending
only on q such that

E

(∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥

q)
≤ Cq

((
E

∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥

)q

+ E

(
max
1≤i≤n

‖Xi‖q
))

.

The following simple result can be obtained by standard estimate (see Theorem 2.12.3 in
[9] or Lemma 4 in Thành [26] for a more general version of condition (ii)).

Lemma A.2 Let α > 0, q > p > 0 and let X be a real-valued random variable. Then the
following three statements are equivalent.

(i) E(|X |p) < ∞.
(ii)

∑∞
n=1 n

α p−1
P (|X | > nα) < ∞.

(iii)
∑∞

n=1 n
α(p−q)−1

E (|X |q1(|X | ≤ nα)) < ∞.

The next lemma is Lemma 2.3 in [20]. This lemma may be compared with Lemma 2.4 of
[25] or Theorem V.9.1 of [28].

Lemma A.3 Let 1 ≤ p < 2 and let X be a real separable Banach space. Suppose for every
sequence {Xn, n ≥ 1} of independent and symmetric X -valued random elements which is
stochastically dominated by a real-valued random variable X with E(|X |p) < ∞ that

lim
n→∞

∑n
i=1 Xi

n1/p
= 0 in probability.

Then X is of stable type p.
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